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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.
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3282. correction. Proposed by José Luis Diaz-Barrero, Universitat Poli-
técnica de Catalunya, Barcelona, Spain and Pantelimon George Popescu,
Bucharest, Romania.

Let A(z) = 2™ + apn_12""1 + -+ 4+ a1z + ap be a monic polyno-

mial with complex coefficients. Suppose that a; = —ag, and that the zeroes
z1, 22, - - ., 2n, Of A(2) are distinct, non-zero complex numbers. Prove that
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Counterexample by Oliver Geupel, Briihl, NRW, Germany.
The statement is false. As a counterexample consider the polynomial

A(z)=z2+%z—%=(z-l—l)(z—%),wherezl:_1andz2=%.We
obtain
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Problem 3282 was originally misstated in [2007 : 429, 431]. Michel Bataille, Rouen,
France gave a counterexample to that earlier version, as did Geupel. The correction of 3282
appeared in [2008 : 239, 241]. Our apologies to all parties for not spotting the error initially.
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3263. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

The Fibonacci numbers F,, and Lucas numbers L,, are defined by the
following recurrences:

b =0, F, =1, and Fn+1 = F,+ F,_1 fOl‘nZl;
Lo =2, L =1, and Ln+1 = L,+ L,_1 fOI'TLZ]..

Prove that for each positive integer n,
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1. Solution by Oliver Geupel, Briihl, NRW, Germany.

n
For each positive integer n we have L,,L,,11 = 2+ ). L2, as can be

k=1
verified by induction. Since Ly > 1 and Fy, > F}, for each k, the inequality
thus follows:
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Equality holds if and only if n = 1.
11. Solution by Arkady Alt, San Jose, CA, USA.

The inequality can be strengthened. For each k¥ > 1 let ap = Lé Fé
and let b, = L,% Fk_T. Applying Hélder’s Inequality
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forp=3and q = %, we successively obtain
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Since
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and it is well known that L Fy, = LiFk for each k, we then have
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